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Abstract. We investigate quantum aspects of Gopakumar–Minwalla–Strominger (GMS) solutions of non-
commutative field theory (NCFT) in the large non-commutativity limit, θ → ∞. Building upon a quanti-
tative map between the operator formulation of 2- (respectively, (2+1)-) dimensional NCFTs and large-N
matrix models of c = 0 (respectively, c = 1) non-critical strings, we show that GMS solutions are quantum
mechanically sensible only if we make an appropriate joint scaling of θ and N . For ’t Hooft’s scaling, GMS
solutions are replaced by large-N saddle-point solutions. GMS solutions are recovered from saddle-point
solutions in the small ’t Hooft coupling regime, but are destabilized in the large ’t Hooft coupling regime
by quantum effects. We make comparisons between these large-N effects and the recently studied infrared
effects in NCFTs. We estimate the U(N) symmetry breaking effects of the gradient term and argue that
they are suppressed only in the small ’t Hooft coupling regime.

1 Introduction

Non-commutative field theories (NCFT), characterized by
a non-commutativity scale θ have been the subject of ac-
tive research recently, largely because of the appearance
of them in certain limits of the string theories and M-
theory [1,2]. These NCFTs deserve further study in their
own right as they exhibit many properties which are elu-
sive, if present at all, in their commutative counterparts –
such as the phenomenon of UV–IR mixing, T-duality and
exact soliton/instanton (both BPS and non-BPS) solu-
tions. One thus expects that a thorough understanding of
NCFTs will shed new light on both quantum field theories
and string theories.

A step toward the understanding was provided by the
rich variety of classical solutions. In the large non-commu-
tativity limit, θ → ∞, NCFT soliton/instanton solutions
were constructed first by Gopakumar, Minwalla and Stro-
minger (GMS) [3]. Exact soliton/instanton solutions were
later constructed [4] for finite non-commutativity, θ <∞,
as well. The classical solutions have been studied in a mod-
uli space approximation [5,6], generalized to gauge theo-
ries [7–10], and applied to string theories in the context of
tachyon condensation [11–14].
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The emphasis of all these works was on finding the
classical solutions, viz. the extrema of the NCFT action.
In this paper, we would like to address quantum mechan-
ical solutions and their semiclassical limit; equivalently,
extrema of the functional integral (not just the action) of
the NCFT. The first step to this goal would be to take
into account the effect of the functional integral measure
and study saddle points. We then encounter a puzzle im-
mediately.

The simplest way to state this puzzle is as follows. Con-
sider a NCFT in Euclidean two dimensions, consisting of
a scalar field T(x, y). In operator formulation, as defined
by the Weyl–Moyal map, the field T(x, y) is represented
by T , an (∞×∞) matrix; equivalently, an operator in an
auxiliary one-particle Hilbert spaceH. The formal similar-
ity of the functional integral over T to the matrix integral
of a Hermitian (N ×N) matrix [15] is obvious.

An important point to note is that, in the one-matrix
model, the measure of matrix integration, the famous
“Coulomb repulsion” term, changes the classical vacuum
dramatically [16]. Indeed, the measure effect, which scales
asO(N2), dominates over the classical action, which scales
naively as O(N) unless a suitable scaling of the coupling
parameters in the classical action is made. As we will show
in Sect. 2, in the two-dimensional Euclidean NCFTs, the
only way the classical action can compete with the mea-
sure effect is to take a large-θ limit in an appropriate way.
Specifically, in the large-θ limit, the quantum effective ac-
tion is given schematically by

Seff [θ,N ] = Sclassical[θ,N ] + Smeasure[N ], (1.1)
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Fig. 1. Phases of two-dimensional non-commutative field the-
ories. For θ ∼ Nν , the GMS, planar, and disordered phases
correspond to ν > 1,= 1, < 1, respectively

where

Sclassical[θ,N ] ∼ O(θN) and Smeasure ∼ O(N2).

Clearly, there are different ways of taking a large-θ, large-
N limit, leading to three distinct phases:

(a) GMS phase : θ ∼ Nν →∞ (ν > 1)
(b) planar phase : θ ∼ N →∞ g2eff = fixed
(c) disordered phase : θ ∼ Nν →∞ (ν < 1).

(1.2)

Evidently, it is only with the scalings (a) and (b) that
the classical action can compete with the term coming
from the measure effect. In the limit (a) the classical term
dominates, therefore the GMS solutions remains a good
quantum solution. Case (b) turns out to be equivalent to
the ’t Hooft planar limit (see Sect. 2); in this case the mea-
sure term and the classical action are comparable, imply-
ing that the saddle-point solutions are different from the
GMS solutions. In case (c), or for a fixed θ as is assumed
for classical NCFT instantons, the measure effect Smeasure
becomes infinitely larger than the classical action Sclassical
and indeed seems to drive the system to a different phase,
referred to as the disordered phase, altogether.

The aforementioned three phases exist also for quan-
tum vacua and solitons in (2 + 1)-dimensional NCFTs,
although the way the functional integral measure effects
come about is somewhat different. Evaluating the energy
for vacua and solitons, we argue that quantum corrections
are small for the GMS phase, but become sizable for pla-
nar and disordered phases. In particular, in the disordered
phase, we find an indication that the classical vacua and
solitons are destabilized completely once the measure ef-
fects are taken into account.

This paper is organized as follows. In Sect. 2, we an-
alyze the above results for a two-dimensional Euclidean
NCFT as an appropriate limit of the Hermitian one-matrix
model [15] studied previously in the context of c < 1 non-
critical strings [17]. In Sect. 3, we provide both perturba-
tive and non-perturbative estimates of the gradient effect,
which were dropped in the analysis of Sect. 2. In Sect. 4,

we extend the considerations to a (2 + 1)-dimensional
NCFT by studying its matrix model analog, viz. the time-
dependent Hermitian matrix model studied previously in
the context of the c = 1 non-critical string [18]. Among the
interesting consequences caused by quantum fluctuations,
we point out the spontaneous breakdown of translation
invariance, and a decrease of the soliton mass. In the last
section, we briefly make some remarks concerning the pos-
sible relevance of the results to IKKT [19] and BFSS [20]
matrix models, and to the phenomenon of UV–IR mix-
ing [21].

A preliminary version of this work was presented in [22].

2 Two-dimensional non-commutative
field theories

2.1 Classical theory

Let us begin with the non-commutative plane IR2θ, whose
coordinates y obey the Heisenberg algebra:

[ya, yb] = iθab = iθεab (a, b = 1, 2). (2.1)

We shall be studying a Euclidean field theory on IR2θ, con-
sisting of a scalar field T(y) with self-interaction potential
– in general polynomial – V (T). Via the Seiberg–Witten
map [2], the theory can be described equivalently in terms
of a non-commutative field theory (NCFT) on IR2, whose
action is given by

SNC[θ;V ] =
∫
IR2

d2y
[
1
2
∂yT �θ ∂yT + V�θ

(T)
]
. (2.2)

In NCFT, the non-commutativity θab is encoded through
the �θ-product

(A �θ B)(y) := exp
(

i
2
θab∂ay1

∧ ∂by2

)
×A(y1)B(y2)|y2=y1=y. (2.3)

It has been noted that a theory of the type (2.2) arises
for the level-zero truncation of the open string field the-
ory on a Euclidean worldvolume of an unstable D1-brane,
either in bosonic or in Type IIA string theories, on which
a non-zero, constant background of the (Euclideanized)
two-form potential B2 is turned on [23]. The scalar field
T(x) in (2.2) represents, when expanded around the top
of the potential V (T), a real-valued tachyon field in these
situations.

The inverse of the non-commutativity parameter, 1/θ,
plays the role of a coupling parameter of the NCFT. To
see this, rescale the coordinates as

y → x =
1√
θ
y so that

[
xa, xb

]
= iεab

and expand the NCFT action (2.2) in powers of (1/θ):

SNC[θ;V�] = θ

∫
IR2

d2x
[
L0 +

1
θ
L−1 + · · ·

]
. (2.4)
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Here,

L0 = V�(T) and L−1 =
1
2

(∂xT)2 , (2.5)

and the �’s refer to the Moyal product (2.3) in which the
non-commutativity parameter θab is replaced by εab. Ev-
idently, for large non-commutativity, (1/θ) → 0, the gra-
dient term L−1 yields a sub-leading order correction1.

Utilizing the Weyl–Moyal map (See AppendixA), one
can map the two-dimensional NCFT (2.2) to a zero-
dimensional Hermitian matrix model, defined by

ISNC[θ;V ] = θTrH

[
V (T ) +

1
θ

(
−1

2
[x̂,T ]2

)
+ · · ·

]
. (2.6)

2.2 Classical vacua and instantons

Classical solutions of the NCFT are most straightfor-
wardly obtainable from (2.6). At leading order in θ →∞,
the classical solutions are critical points of the potential,
V ′(T ) = 0, viz. a matrix-valued algebraic equation of de-
gree (P−1). Let us denote the local minima of the polyno-
mial function V (λ) as λ0, λ1, λ2, · · ·, conveniently labelled
in ascending order: V (λ0) ≤ V (λ1) ≤ V (λ2) ≤ · · ·.

One then finds that the most general classical solution
of V ′(T ) = 0 takes the form

T =
N∑
�=1

λa�
P �,

where the λa�
’s take values out of the set (λ0, λ1, · · ·) per-

mitting duplications. We will define the eigenvalue density
ρ(λ) by

ρ(λ) :=
1

dimH
∑
a

δ(λ− λa). (2.7)

As a concrete example, consider a symmetric double-well
potential:

V (T ) = V0 +
λ4
4

(
T 2 − T20

)2
, (2.8)

for which the roots λa are ±T0.

Vacua

Using (2.7), we easily find the doubly degenerate vacua
(R and L, for left and right), given by

TR,L = ±T0II. (2.9)

These solutions are exact and are valid for any θ, small or
large. The energy E0 is given by E0 = (Nθ)V0.

1 Quantum mechanically, somewhat surprisingly, the L−1

term contributes leading order effects in the planar expansion
in powers of 1/N . In Sect. 3, we will show that a small ’t Hooft
coupling suppresses the contribution compared to those from
the L0 term

Instantons

The other solutions, using (2.7), are given by

TN1,N2 = T0
(
P [N1] − P [N2]

)
. (2.10)

These solutions are generally valid only for large θ, with
O(1/θ) corrections affecting both their profile and their
energy. The notation P [N1] stands for a projection oper-
ator of rank N1, and similarly for N2. We will call the
solution (2.10) an “(N1, N2) instanton”.

From (2.7), we find that the above vacua and instan-
tons yield the following density profiles:

ρR, L(λ) = δ(λ∓ T0),
ρ[N1,N2](λ) = n1δ(λ− T0) + n2δ(λ+ T0),

where

n1,2 =
N1,2
dimH . (2.11)

2.3 Quantum theory

Definition

The quantum NCFT is defined via the following regular-
ized partition function:

ZNC[θ, V�;L1L2] =
∫

[dT]L1,L2
exp(−SNC[θ;V�]), (2.12)

where SNC is given by (2.4). Here L1, L2 represent large
distance cutoffs introduced as regulator of possible in-
frared divergences. Generically, the theory also needs an
ultraviolet cutoff, e.g. a lattice spacing a; the theories
discussed in this paper will be taken to be ultraviolet-
renormalizable. We will assume that in the above defini-
tion (2.12) the limit a→ 0 has been taken.

In the previous section, we have seen that a classi-
cal NCFT is equivalent, via the Weyl–Moyal correspon-
dence, to a model of a (∞×∞) Hermitian matrix, (2.6).
What then would be the corresponding statement at the
quantum level? As the theory (2.12) is defined with the
large distance cutoffs L1, L2, one is naturally led to a non-
commutative torus (see, e.g. [1]) as a concrete setup for
infrared regularization; see Fig. 2 for an illustration.

Let us start with a non-commutative torus TT2θ, defined
through the so-called quotient condition on the (N ×N)
matrices X1, X2 by

Xa + Laδab IIN = U−1
b XaUb (a, b = 1, 2).

Generically, a non-trivial solution to the quotient condi-
tion requires N → ∞. Applying the condition in two dif-
ferent directions on TT2θ, one finds that the quotients Ua

ought to obey

UaUbU
−1
a U−1

b = e−iΘab

II,
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Fig. 2. Non-commutative plane as a continuum and large-
volume limit of the non-commutative torus. The limit requires
N → ∞

where Θab is dimensionless and will shortly be identified,
for a square torus, with Θab = θab(2π/L)2 (L1 = L2 = L).

The scalar field T defined on TT2θ is defined via

T =
∑

{m}=ZZ
T̃ mUm1

1 Um2
2 .

Here, T̃ m belongs to a sufficiently rapidly decreasing se-
quence of the appropriate Schwartz space.

One can represent the U1,U2 basis in terms of Hermi-
tian operators of the form

Ua = exp
(
2πi

ya

La

)
(a = 1, 2),

where, in the large-N limit,[
ŷa, ŷb

]
≈ i

(
LaLb

(2π)2

)
Θab ≡ i θab,

in which we have used (2.1) in the last step.
The simplest situation arises for so-called rational non-

commutative tori. For our purposes it is sufficiently gen-
eral to consider, among these, the case when

Θab = Θεab and Θ = n/N (n = 1, 2, · · · , N). (2.13)

Focusing on the square torus L1 = L2 = L from now on,
we get, using the above two equations,

θ =
(

L

2π

)2
Θ =

(
L

2π

)2
n

N
. (2.14)

For the non-commutative torus with such a value of θ,
the Weyl–Moyal correspondence maps the partition func-
tion (2.12) of the NCFT on TT2θ to the following partition
function for a Hermitian matrix of size (N ×N):

ZN [Θ, V ;N ] =
∫

[dT ]N exp(− ISNC[Θ;V (T )]), (2.15)

where the matrix integral measure is given by

[dT ]N :=
N∏
i=1

dT ii

∏
1≤i<j≤N

2dRe(T ij)dIm(T ij).

Let us now consider the limit L → ∞; in this limit the
non-commutative torus TT2θ ought to approach the non-
commutative plane IR2θ. Since the Heisenberg algebra (2.1)
on IR2θ has only infinite-dimensional representations, the
above limit must also be accompanied by a limit N →∞.
As θ ∼ L2(n/N) from (2.14), the large-θ limit discussed
in Sect. 2.1 can be attained by

L→∞, N →∞, n→∞ and θ ∼ L2(n/N)→∞.

This is achievable by letting

L ∼ Nγ , n ∼ Nα ⇒ θ ∼ Nν ,

where

ν = (2γ − (1− α)) , (2.16)

and we take2

α < 1 and γ >
1
2
(1− α)→ ν > 0.

To sum up, the above observations lead to the definition
of the quantum NCFT on IR2θ as follows:

lim
L1L2→∞

ZNC[θ, V�;L1L2] ≡ lim
N→∞

ZN [θ, V ;N ], (2.17)

where, on the right-hand side, the non-commutativity pa-
rameter θ is given in terms of (2.14).

2.4 Classical, planar, and disordered phases of NCFT2

The Weyl–Moyal equivalence (2.17), together with (2.16),
indicates that the quantum NCFT is actually defined in
terms of a double-series expansion: large-N , and large-
θ expansions. To give details, let us define the quantum
NCFT in terms of the Hermitian matrix model, as in the
right-hand side of (2.17). Suppose, at large θ, we ignore
the subleading part L−1 in the action (2.4). In that case,
the partition function becomes identical in form to the
one-matrix integral [15] and the c < 1 matrix models for
c < 1 non-critical strings [17]. These latter models are
defined in terms of the matrix model partition function
ZZmm

ZZmm[β, V ;N ] =
∫

dM exp(−βTrNV (M)), (2.18)

where V (x) is the Boltzmann function, taking a polyno-
mial form: V (x) = a2x

2 + a4x
4 + . . .. Evidently, modulo

the identification θ = β, we have

ZN [θ, V ;N ] = ZZmm[β, V ;N ]. (2.19)

2 In the regularization adopted, the ultraviolet cutoff in the
momenta pa ≡ i∂ya turns out to be Λuv = N/L, as the highest
Fourier modes are set by ∼ UN

1 , UN
2 . Our scalings should ensure

Λuv → ∞. This is readily achievable by imposing the additional
condition γ < 1
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To investigate the partition function ZN , we will therefore
proceed as in the case of the one-matrix model. Integrat-
ing out the “angular part” of T , the partition function
ZN is rewritable as an integral over the N eigenvalues
λ1, λ2, · · · , λN of T [15]:

ZN [θ, V ;N ] = CN

∫ N∏
k=1

dλk
N∏
k<�

(λk − λ�)2

× exp

(
−θ

∑
k

V (λk)

)
(2.20)

= CN

∫ N∏
k=1

dλk exp(−Seff(λ1, · · · , λN )),

where

CN = Vol

[
U(N)

U(1)N × SN

]
=

1
N !

N∏
K=1

(2π)K−1

Γ (K)

refers to the angular volume measure factor, and

Seff(λ1, · · · , λN ) = Sclassical[N, θ] + Smeasure[N ], (2.21)

with

Sclassical[N, θ] = Nθ

(
1
N

N∑
k=1

V (λk)

)

and

Smeasure[N ] = N2

 1
2N2

∑
1≤k 	=�≤N

ln(λk − λ�)2


referring to the effective action as a sum of the classical
contribution and the measure factor contribution.

The large-N limits of one-matrix models are describ-
able by a master field configuration, where the distribu-
tion of the eigenvalues λ1, · · · , λN is encoded in the den-
sity field ρ(λ), introduced in (2.7), with support over con-
nected compact domains D and subject to the constraints∫

D
dλρ(λ) = 1 and ρ(λ) ≥ 0 on λ ⊂ D. (2.22)

The effective action of the eigenvalues then becomes

Seff [ρ] = N2
[
g−2
eff

∫
D

dλρ(λ)V (λ)

−
∫

D
dλ

∫
D

dµρ(λ)(ln |λ− µ|)ρ(µ)
]
, (2.23)

in which

g2eff ≡
N

θ
(2.24)

measures the relative weight between the classical contri-
bution and the measure factor contribution.

Now the effective action (2.23) is exactly of the form
(1.1). One thus discovers that, in quantum NCFT, there
ought to exist three distinct regimes as in (1.2). If one
were to define the quantum NCFT in terms of the Her-
mitian matrix model, as in (2.17), via the Weyl–Moyal
equivalence, the three different regimes are distinguished
by relative weights in (2.23) of the classical contribution
Sclassical ∼ O(Nθ) and the matrix integral measure part
contribution Smeasure ∼ O(N2).

The above considerations entail an important conse-
quence for the interpretation of the non-commutative field
theories and the classical solutions therein, as studied in
[3]. First, in non-commutative field theory, one defines the
theory by viewing the non-commutative field T as a rep-
resentation of the Heisenberg algebra, which is infinite-
dimensional in case the theory is defined on IR2θ. If one in-
terprets this as meaning that the size N of the matrix field
T is strictly infinite to begin with, then the classical ac-
tion Sclassical becomes insignificant, as it is far outweighed
by the quantum contribution Smeasure coming from the
matrix-integral measure. Second, in order to be able to
view the classical solutions, e.g. solutions studied in [3],
as saddle points of the partition function (2.12), one must
first “regulate” the non-commutative field theory in such
a way that the corresponding Weyl formulation is defined
on a finite N -dimensional Hilbert space to begin with,
viz. the Hermitian matrix model is for (N ×N) matrices.
In order to recover a sensible saddle-point solution, one
subsequently needs to take an appropriate large-θ, large-
N limit. Equation (1.2) indicates that, a priori, there are
three types of possible scaling of the non-commutative
field theory. Based on this observation, we thus conclude
that, only in the classical scaling (a) the classical solu-
tions found in [3] are also the saddle-point solutions. For
the planar scaling (b), the classical solutions ought to be
replaced, as we will find in the next section, by new ones
in which the eigenvalues are distributed. In the disordered
scaling (c) of (1.2), the classical solutions found in [3] are
washed out completely.

2.5 Quantum vacua and instantons

We now flesh up the preceding discussion by studying
the quantum vacua and instantons of the two-dimensional
NCFT on IR2θ in the large-N , large-θ limit in the various
regimes (1.2). In doing so, we will use the analogy (2.19)
with the one-matrix model studied in the context of the
c < 1 non-critical string [17] to quantize the solutions de-
scribed in Sect. 2.2. We will do explicit calculations in the
GMS and planar phases and will make some qualitative
remarks about the disordered phase.

We begin by defining the “free” energy F [θ, V ;N ] by

ZN [θ, V ;N ] :=
(

2π
N

)N2/2

e−F [θ,V ;N ],

where the normalization is chosen so that F = 0 for the
quadratic potential V (T ) = (1/2)TrT 2. As is well known
[15], the free energy has the following large-N expansion:
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F [θ = (N/g2eff), N ] = N2F0(g2eff) + F1(g2eff)
+ N−2F2(g2eff) + . . . , (2.25)

where each of the Fn is defined via a power series in g2eff
with a radius of convergence gc. It will be convenient in
this stage to rephrase the three limits (1.2):

(a) GMS phase : N →∞, geff → 0
(b) planar phase : N →∞, geff = fixed
(c) disordered phase : N →∞, geff →∞. (2.26)

The leading term F0 in (2.25) is given by the saddle-
point contribution in the large-N limit. Clearly, the lead-
ing behavior of (a) the GMS-phase free energy, and (b)
the planar-phase free energy (for geff < gc) are derivable
from this saddle-point expression. The disordered-phase
free energy is clearly in the strong coupling phase geff > gc
in which the large-N expansion (2.25) breaks down.

We see, therefore, that we can derive the leading be-
havior of the partition function ZN in the double limit,
N → ∞, θ → ∞, from the large-N saddle point (except
in the disordered phase). We describe in AppendixB how
to compute the large-N saddle points as minima of the
effective action (2.23) subject to the constraint (2.22). We
simply quote the result here (see AppendixB or [15,24]
for more details of the derivation).

For the double-well potential of the type (2.8), the
saddle-point density is given in terms of two-cut eigen-
value distribution3:

ρs(λ) =


1
2g

−2
eff

√
λ2(λ2 − λ2−)(λ2+ − λ2)

for λ ∈ (−λ+,−λ−) ∪ (λ−, λ+),
0 otherwise.

(2.27)

Here

λ− =
√

(T0 − 2g2eff), λ+ =
√

(T0 + 2g2eff).

As explained above, (2.27) is the leading large-N , large-θ
value of the quantum corrected density function, in the
planar limit (b), corresponding to the classical (N1, N2)
instanton of Sect. 2.2 for N1 = N2.

Equation (2.27) is clearly different from the classical
(GMS) value ((2.11) with N1 = N2). But from what we
have discussed above, we expect to recover the classical
(GMS) value in the weak ’t Hooft coupling limit, geff → 0.
This is indeed what happens. In this limit, the eigenvalue
density, (2.27), reduces to

ρs(λ) −→ ρclassical(λ) =
1
2
δ(λ− T0) +

1
2
δ(λ+ T0).

This is identical with (2.11) for

N1 = N2 =
N

2
equivalently n1 = n2 =

1
2
.

3 We assume g2
eff < T0/2 so that the parameters λ± are real-

valued. At g2
eff = T0/2, λ− vanishes and the two cuts merge

into one cut, signifying a spill-over of eigenvalues from each
potential well into the other

λ  

ρ (λ)

ρ (λ)

1

2

Fig. 3. Eigenvalue distributions for non-commutative vacua
and instantons. Classically, the eigenvalues are piled up to a
delta-function type distribution, as depicted as the dashed line.
Quantum mechanically, the eigenvalues repel each other and
are spread over, as depicted by the horizontal lines

It is worth mentioning that for the scaling (b) the clas-
sical limit geff → 0 of the planar saddle-point configura-
tion is not necessarily the same as the classical regime (a).
As the result (2.27) for the double-well potential exempli-
fies, the “classical limit” geff → 0 yields, out of N pos-
sible classical instantons of type (N1, N2), the one with
N1 = N2 = N/2 singled out.

In fact, it is possible to visualize the quantum instan-
tons as non-interacting quantum vacua, localized at λ−
and λ+, respectively. Consider the situation that the two
potential wells are widely separated and contain N1,
N2 eigenvalues, respectively. Then the partition function
reads

Z[θ, V ;n1, n2]

=
∫ Λ

−∞

N1∏
k=1

dλk
∫ +∞

Λ

N∏
�=N1

dλ�
∏

1≤k<�≤N

(λk − λ�)2

× exp(− ISNC[θ, V ;N1, N2]).

Here, Λ denotes a suitably chosen, midpoint “cutoff” value
of the eigenvalue between the two cuts. In fact, the above
partition function is expressible as a matrix integral over
two separate matrices: T 1 of size (N1×N1) and T 2 of size
(N2×N2), whose eigenvalues are restricted to be less than
or larger than Λ, respectively. One easily finds that

Z[θ, V ;n1, n2]

=
∫

[dT 1]N1

∫
[dT 2]N2 exp(− ISNC[θ, V ;N1, N2]),

where

ISNC = θ [TrV (T 1) + TrV (T 2)]
+ [2Tr (ln(T 1 ⊗ II− II⊗ T 2)) + · · ·] , (2.28)

in which the ellipses denote gradient corrections. The
above effective two-matrix integral is well defined in the
large-N , large-θ limit. Evidently, at leading order in a
(1/θ) expansion, the matrix integral is factorized into two
disjoint one-matrix integrals, except that the eigenvalues
are bounded from above and below, respectively. The
saddle-point configuration is described precisely by the
above solution. The error involved in the ellipses in (2.28)
is of order e−O(N), due to the tunnelling effect, and hence
is completely negligible in the continuum limit.
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2.6 Quantum corrections

The central observation in the foregoing discussion was
that the quantum effects drive the eigenvalues to repel
each other – a dramatic change when compared to the sit-
uation at the classical level. To demonstrate how striking
the quantum effects are, let us compute the “quantum”
Euclidean action and compare its ground-state value with
that of the classical action. The second order perturbation
theory asserts that, around the ground state, quantum
corrections to physical quantities are typically negative.
Thus, one would expect that, once the quantum correc-
tions are taken into account, the Euclidean action gets
lowered. In quantum NCFT, quite to the contrary, we will
find that the quantum effects increase the Euclidean ac-
tion! This has to do with the fact that the repulsion among
the eigenvalues is a purely quantum mechanical effect, not
present at the classical level at all.

Let us begin with the effective action of the eigenvalue
density field, ρ(λ), (2.23). The saddle-point configuration
is governed by solutions of (B.2). We shall be taking a
generic condition that the classical potential V (λ) is a
concave function of λ with a global minimum at λ = λs
and denote V (λs) = V0. Evidently, V (λ) ≥ V0 for all λ.
Multiplying (B.2) with ρs(λ) and then integrating over λ,
we obtain

N2
[
g−2
eff

∫
D

dλρs(λ)V (λ)

− 2
∫

dµdλρs(µ) ln |λ− µ|ρs(λ)
]

= NθE,

where we have used the normalization condition,
∫

dλρs
(λ) = 1, and E is the first integral of motion. Using
this relation, the quantum Euclidean action (2.23) is re-
expressible as

Seff [ρs] = N2
[
g−2
eff

∫
D

dλρs(λ)V (λ)

−
∫

D
dλ

∫
D

dµρs(λ) ln |λ− µ|ρs(µ)
]

= NθE +
1
2
Nθ

(∫
dλρs(λ)V (λ)− E

)
. (2.29)

The first integral of motion E is fixed uniquely to E =
NθV0 by demanding that, in the weak ’t Hooft coupling
limit, geff → 0, and the saddle-point value of the quantum
Euclidean action (2.29) reduces to that of the classical Eu-
clidean action, Sclassical = NθV0. Thus, one readily finds
that the second term in (2.29) amounts to a change of the
Euclidean action due to quantum effects.

Let us now evaluate the second term in (2.29), the
quantum correction to the Euclidean action. First of all,
from the expression, the problem whether the correction
is negative – as the second order perturbation theory sug-
gests – or not is easily analyzable. Classically, the N
species of eigenvalues were all sitting at a single point
λ = λs, but, once the quantum effects are taken into ac-
count, they will repel each other and form a domain, de-
noted in (2.29) by D, of an eigenvalue distribution around

the point λ = λs. Take a generic point λ inside D. As
V (λ) ≥ V0 by the definition of λs and ρs(λ) is distributed
over D, it follows immediately that

∆E := (Seff −NθE)

=
1
2
Nθ

(∫
D

dλρs(λ)V (λ)− E

)
=

1
2
Nθ

∫
D

dλρs(λ)(V (λ)− V0) (2.30)

≥ 0.

This proves that the quantum correction in (2.29) is posi-
tive, in contrast to what one expects from the second order
perturbation theory. Evidently, the reason has to do with
eigenvalue repulsion – classically invisible but a quantum
mechanically generated effect. The repulsion gives rise to
a positive “pressure”, resulting in an increase of the Eu-
clidean action.

We now compute the increment of the Euclidean action
explicitly. We will take, for simplicity, V (λ) = (1/2)λ2 –
an approximation applicable, at leading order, for each cut
of a generic concave potential, according to the result of
(2.28). Utilizing (B.3) (see also [15]), it is straightforward
to compute ρs(λ). We find

ρs(λ) =
1
2π

√
4− λ2 for − 2 ≤ λ ≤ +2. (2.31)

Substituting (2.31) into (2.30), we obtain (recall that here
the classical energy is normalized as NθE = 0)

∆E = Seff [ρs] = Nθ

∫ 2

0
dλ

1
2π

√
4− λ2 · 1

2
λ2

=
1
4
Nθ.

Thus, the correction is of order N2 in the planar phase
(b) of (2.26).

We conclude this section by mentioning that quan-
tum corrections in the disordered phase cannot be calcu-
lated by the above procedure, as the large-N saddle point
is irrelevant. It is readily seen, however, that the quan-
tum corrections in the disordered phase will be larger.
In the example analyzed below, we will see that (∆E)Q/
(∆E)planar →∞ in the disordered phase (c) of (1.2).

2.7 Perturbative manifestation
of the Vandermonde effect

The effect of Smeasure in (2.21), being originating in the
Vandermonde determinant of the functional integral mea-
sure, ought to be obtainable in the standard Feynman
diagrammatics. How do the effects manifest themselves?
We will now show that, in the context of the Feynman dia-
grammatics in Weyl formulation, the aforementioned lim-
its (1.2) or (2.26) are derivable in the large-θ and large-L
limit4.

4 Related remarks are also made in [25], though some of the
interpretations are in contrast to ours
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Fig. 4. One-loop, non-planar contribution to the two-point
Green function

We begin with the Feynman rules defined in the Moyal
formulation by (2.12) and the potential (2.8). Our objec-
tive is to see how the quantum corrections differ in the
three scaling regimes, (1.2). In computing the effects, we
keep in mind the relations (2.14) between the parameters
(L, θ) of TT2θ and the parameters (N, θ) of IR2θ.

Expand the action around the “right vacuum” T(x) =
T0 + φ(x):

SNC = θ

∫
d2x

[
V0 +

(
λ4T20φ

2 + λ4T0φ3 +
λ4
4
φ4

)
+

(
− 1

2θ
(∂xφ)

2
)]

�

. (2.32)

Consider, for definiteness, the non-planar, one-loop con-
tribution to the connected two-point Green function, de-
picted in Fig. 4. This diagram provides an example of IR
problems in NCFT [21].

The contribution involves the following moduli-space
integral associated with the one-loop Feynman diagram,
where D denotes the spacetime dimension:

ID =

∞∫
0

dt
1

tD/2 exp
(
−tm2 − Λ2eff

t

)
,

where m2 = 2 from (2.32), p is the momentum flow
through the external line, and

Λ−2
eff = Λ−2

UV + 2λ4 (θ · p)2 .

The result is

I2 = 2K0 (2m/Λeff)→ log (2m/Λeff) + . . .

for (2m/Λeff)� 1
→ 2K0 (2m|θp|) for p = finite, Λ→∞
∼ 2K0 (2mθ/L) for |p| ∼ 1/L.

Using the relation L = (θN)1/2 on TT2θ, we finally obtain

I2 = 2K0

(
2m
geff

)
. (2.33)

Thus, I2 = ∞ in the disordered phase, I2 is finite in the
planar phase, and I2 = 0 in the GMS phase. This is exactly
as we would predict on the basis of our earlier discussion of
the behavior of the quantum effective action in the limits
(1.2), namely that the GMS solution remains stable in
the limit (a), has a finite correction in the planar limit
(b), and is completely destabilized in the limit (c), where
the measure term becomes infinitely large compared to
the classical term in the action.

3 Effect of the gradient term

The foregoing discussion was largely based on keeping only
the leading order term, L0 in (2.5), in the large θ limit.
While the gradient term L−1 is of sub-leading order in
(1/θ) expansion, as noted below (A.4), it breaks the U(∞)
symmetry explicitly – a point which one ought to be con-
cerned with for its consequential effects to the results we
have obtained in the previous subsections. In particular, as
the dramatic quantum effects we have deduced are largely
based on the L0-term and the U(∞) symmetry therein,
one might suspect that the term L−1, being part of the
classical action, would render a sizable symmetry break-
ing effect. This is because the size of the gradient term is
given by

IS−1 =
∫

d2xL−1 =
∫

d2x
(
−1

2
[x,T]2�

)
∼ O(N2).

Fortuitously, as we will show in this section, the gradient
effect turns out to be of order O(N2g2eff), viz. scales fur-
ther by a factor of the ’t Hooft coupling, g2eff . The scaling
is not universally valid, but only for geff < gceff for some
finite gceff , as is inferred from the large-N phase transition
[26]. As we are interested in the weak ’t Hooft coupling
regime, geff � 1, the above counting holds valid. In par-
ticular, it implies that the measure effect, whose size is of
order O(N2), outweighs the gradient effect. Thus, in the
weak ’t Hooft coupling regime, one can utilize the U(∞)
symmetry, and recast the NCFTs literally as the N →∞
limit of the matrix model studied in [15].

3.1 Perturbative estimates

We will begin, utilizing the Weyl formulation of the
NCFT, with the computation of leading order perturba-
tive corrections. For this purpose, we regularize the theory
so that the fields are defined on N -dimensional Hilbert
space, Hθ[N ], spanned by Span[|n〉, n = 0, . . . , N − 1],
where

|n〉 = a†n
√
n!
|0〉 and

1√
2

[
x̂1 ± ix̂2

]
≡ (a,a†).

Taking the potential to be (2.8) and expanding around
T = 0, the NCFT partition function (2.15) is given by5

ZN =
∫

[dT ]N exp (− ISNC[θ;T ]) ,

where

ISNC = ( IScl + IS0P + IS0V) + IS−1.

5 Actually, in (2.8), T = 0 is an unstable point. One might
alternatively expand the potential around stable vacua, T =
±T0II. This would give rise to an additional cubic interaction,
but it turns out that the conclusion based on (3.1) remains
unchanged
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X 2X

(b)(a)
Fig. 5a,b. Feynman diagrams for leading order quantum cor-
rections due to a the potential S0V , and b the gradient term
S−1

Here

IScl = θTrV (0), where V (0) = V0 +
λ4
4

T40,

IS0P = θTr
(
m2

2
T 2

)
, where m2 =

λ4
2

T20,

IS0V = θTr
(
λ4
4

T 4
)
,

IS−1 = Tr
(
−1

2
[x̂,T ]2

)
. (3.1)

3.2 Leading order corrections

The leading order quantum corrections to the free energy
are obtained as

〈 IS(T )〉0P =
1

Z0P

∫
[dT ] IS(T ) exp(− IS0P)

= IScl +∆ IS0P +∆ IS0V +∆ IS−1 + . . . (3.2)

where Z0P :=
∫
[dT ] exp(− IS0P) and

IScl ≡ θTrV (0) ∼ θNV (0),

∆ IS0P ≡ θm2 〈
TrT 2

〉
0P ∼ N2,

∆ IS0V ≡ 〈 IS0V〉0P = θλ4 · N3

(θm2)2
,

∆ IS−1 ≡ 〈 IS−1〉0P =
N ·N2

θm2 . (3.3)

Diagrammatically, ∆ IS0P originates from the one-loop
vacuum diagram, while ∆ IS0V and ∆ IS−1 are from the
diagrams (a) and (b) in Fig. 5, respectively. Note that
the propagator is given by 〈TT 〉0P ∼ 1/(θm2). Thus,
the diagrams are evaluated as follows. For diagram (a),
the contribution equals (vertex) [θλ4]× (two propagators)
[1/(θm2)2]× (three “color” loops) [N3]. In evaluating
〈 IS−1〉0P, the two terms will contribute Tr (T x̂aT x̂a) and
Tr

(
T 2x̂2a

)
. As Trx̂a = 0, only the latter will contribute,

and it is given by Feynman diagram (b) in Fig. 5. There,
X2 on the outer color loop refers to the insertion of
Tr

(
x̂2a

)
∼ ∑N−1

n=0 n = O(N2). Hence, for diagram (b),
the contribution equals (color loop) [N ]× (color loop with
X2 insertion) [N2]× (one propagator) [1/(θm2)].

To proceed, introduce the following rescaled parame-
ters:

λ4 :=
λ4
m2 , V (0) :=

V (0)
m2 , θ :=

m2θ

N
=

m2

g2eff
.

Making in (3.1) a change of the variable θm2T 2 = M2

and bringing the quadratic term into a canonical normal-
ization, we have

ISNC = N2θV (0) + Tr
[

1
2
M2 +

1
N

λ4

θ

(
1
4
M4

)
+

1
N

1
θ

(
−1

2
[x̂a,M ]2

)]
, (3.4)

with which the partition function (2.18) can be defined.
Equation (3.4) reveals that the effective coupling of the po-
tential term is (λ4/θ) and that of the gradient term is 1/θ.
For the perturbation theory to make sense, one will need
these couplings to be small enough. We now ask if there
is a range of parameters satisfying this restriction as well
as the condition that the gradient terms are suppressed
compared to the potential term. There indeed does exist
such a region in the space of the rescaled parameters, viz.

θ � λ4 � 1. (3.5)

The first limit, θ � 1, is readily attainable, in the non-
commutative torus regularization adopted in (2.13), by
taking n ∼ O(N). We will now explicitly verify that,
in this weak coupling regime, the gradient term is sup-
pressed, at least at leading order in the perturbation the-
ory. In terms of the rescaled parameters, the estimates
(3.3) are re-expressible as

IScl = N2θV (0), ∆ IS0P = N2, ∆ IS0V = N2
(
λ4

θ

)
,

∆ IS−1 = N2
(

1
θ

)
. (3.6)

We thus realize that, in the ’t Hooft’s large-N limit, all the
terms are of order O(N2), and hence are planar. However,
the weak coupling limit ensures that the leading order
corrections are hierarchically ordered:

IScl � ∆ IS0 � ∆ IS1 � ∆ IS−1. (3.7)

Hence, we conclude that, under (3.5), the gradient term
IS−1 is indeed suppressed compared to the potential term.

3.3 Higher order corrections

To ensure that the scaling limit (3.5) is sufficient for drop-
ping the gradient terms at least perturbatively, we now
evaluate next-to-leading order corrections. These arise
from the second order expansion of the partition func-
tion, and are given by the connected vacuum diagrams,
see Fig. 7:
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X X

X

X X

(c) (d) (e) (f)
Fig. 6c–f. Feynman diagrams for higher order quantum cor-
rections due to c the potential (S0V)2, d and e the gradient
terms (S−1)2, and f the cross term (S0VS−1)

〈
1
2!

IS2
〉conn
0P

=
1

Z0P

∫
connected

[dM ]
1
2!

( IS0V + IS−1)
2

× exp (− IS0P) .

Dropping again “dimensionless” numerical factors ofO(1),
we obtain the corrections as follows:

diagram (c) ∼ (θλ4)
2 N4

(θm2)3
= N2

(
λ4

θ

)2
,

diagram (d) ∼ N ·N3

(θm2)2
= N2

(
1
θ

)2
,

diagram (e) ∼ N2 ·N2

(θm2)2
= N2

(
1
θ

)2
,

diagram (f) ∼ (θλ4)
N ·N ·N2

(θm2)3
= N2

(
λ4

θ

)
. (3.8)

Evidently, the insertion of the gradient term IS−1 is ac-
companied by an extra factor of λ4/θ. In the scaling limit
(3.5), the factor is small enough. We thus conclude that,
by taking the scaling limit (3.5), the effect of the gradient
terms can be made hierarchically small compared to the
Vandermonde effect.

3.4 Non-perturbative estimate

We will now make use of Feynman’s variational method
[27,28], and prove non-perturbatively that the scaling
limit (3.5) ensures subdominance of the gradient terms.
From (2.19) expressed in terms of the rescaled action (3.4),

ZN := exp(−Fexact)
=

∫
[dM ] exp(− IS0) exp(− IS−1)

=
∫

[dM ] exp(− IS0) 〈exp(− IS−1)〉0 ,

where Fexact refers to the exact free energy, IS0 = ( IS0P +
IS0V), and

〈· · ·〉0 :=
∫

[dM ] · · · exp(− IS0)/
∫

[dM ] exp(− IS0).

Applying Jensen’s inequality, we have

ZN ≥
∫ N∏

a=1

[dM ] exp(− IS0) exp (−〈 IS−1〉0) .

Thus, we find a variational estimate to the upper bound
of the exact free energy:

Fexact ≤ F0 +∆F,

where

F0 = − ln
∫

[dM ] exp(− IS0) and ∆F := 〈 IS−1〉0 . (3.9)

The quantity ∆F can be evaluated explicitly by uti-
lizing the well-known formula [29]

〈MklMmn〉0 = C1δklδmn + C2δknδlm, (3.10)

where

C1 =

〈
(TrM)2

〉
0

(N2 − 1)
−

〈
TrM2〉

0

N(N2 − 1)

and

C2 =

〈
TrM2〉

0

(N2 − 1)
−

〈
(TrM)2

〉
0

N(N2 − 1)
.

Equation (3.10) can be proved from the UL(N) × UR(N)
invariance of both the action IS0 and the integral measure
[dM ]. Hence, the correction ∆F in (3.9) is computed to
be

∆F =
〈

1
θ

1
N

Tr
(
−1

2
[x̂a,M ]2

)〉
=

1
θ

[
− (x̂a

nkx̂
a
lm)

1
N
〈MklMmn〉0

+(x̂ax̂a)nk
1
N

〈
(M2)kn

〉
0

]
=

[
1

N(N2 − 1)

(
N

〈
TrM2〉

0

− 〈
(TrM)2

〉
0

)]1
θ
Tr(x̂ax̂a),

where, in the last equality, we have used the fact that
Trxa = 0. Evidently, from the last expression, as

〈
TrM2〉

and
〈
(TrM)2

〉
scale with N as O(N2), the coefficients in-

side the square bracket are of order O(1). Hence, ∆F is
proportional to Tr(x̂ax̂a)/θ, and is of order O(N2/θ). As
the ISclassial and 〈 IS0〉 scale as O(N2θ) and O(N2), respec-
tively, the above estimate indeed shows that the gradient
term contribution is bounded from above to a value sup-
pressed by powers of 1/θ. This completes the proof that
(3.7) holds at the non-perturbative level.
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3.5 Remarks on gradients in gauge theories

In case the NCFT is promoted to gauge theories, the sit-
uation becomes even more favorable. In this section, we
have also restricted our investigation to NCFTs consisting
only of scalar fields – corresponding to the level-zero trun-
cation in the context of open string field theory. Once the
gauge field is coupled, the action is schematically given by

SNC =
∫
IR2

d2y

[
1
4
Fmn �θ Fmn +

1
2
Dm(A)T �θ Dm(A)T

+ V�θ
(T) + · · ·

]
,

corresponding to truncation of the open string field theory
at level one. Here, Dm(A)T := ∂mT + [Am,T]�, and, via
the Weyl–Moyal map, it is expressible as proportional to
[Y m,T], where Y m := ym + θmnAn(y). A crucial obser-
vation for the present discussion is that, as the authors of
[4] have pointed out, Y m = 0 in classical vacua at any
non-zero value of θ. Because of this, the tachyon gradient
term, [Y m,T ]2, drops out of the Euclidean action com-
pletely. Moreover, this nullification takes place for a finite
value of θ.

4 D = (2 + 1) non-commutative
field theories

We next turn our attention to non-commutative field the-
ories in (2+ 1)-dimensional spacetime. As in the previous
sections, our main motivation for these theories would be
that these theories describe tachyon dynamics on an un-
stable D2-brane, either in bosonic or in Type IIB super-
string theories, at non-zero B-field background. The main
result we shall be showing is that, at low-energy, quan-
tum aspects of vacua and solitons (corresponding to non-
BPS D0-branes) are governed by quantum mechanics of
a (0+ 1)-dimensional Hermitian matrix model. Moreover,
we again find that the continuum and semiclassical limit
is governed by the large-N , large-θ limit. Most of the dis-
cussions are closely parallel to the two-dimensional case
of the previous section. Nevertheless, for the sake of the
readers, we will repeat those parts relevant for foregoing
discussions.

4.1 Classical theory

Let us begin with the non-commutative (2 + 1)-dimen-
sional spacetime IR2,1θ whose coordinates are (t,y) and
with “spacelike” non-commutativity θab:[

ya, yb
]
= iθab and [t, ya] = 0, (a, b = 1, 2).

Take a field theory on IR2,1θ , consisting of a scalar field
T(t,y) with self-interaction potential V (T). The Seiberg–
Witten map enables us to map the theory into to a non-
commutative field theory on IR2,1, whose action is given

by

SNC[θ; V] (4.1)

=
∫
IR2,1

dtd2y
[
1
2
∂tT �θ ∂tT− 1

2
∂yT �θ ∂yT− V�(T)

]
.

The non-commutativity θab is encoded into the �θ-prod-
uct, defined as before; see (2.3). We are again interested
in the large non-commutativity limit, θ →∞. Rescale the
spatial coordinates, y → x, the same way as in (2.4), and
expand the action (4.1) in powers of (1/θ):

SNC[θ;V ] = θ

∫
IR2,1

dtd2y
[
L0 +

1
θ
L−1 + · · ·

]
, (4.2)

where

L0 =
1
2
(
(∂tT)2 − V�(T)

)
and L−1 = −1

2
(∂xT)2.

Again, for large non-commutativity, (1/θ)→∞, the gra-
dient term L−1 drops out.

The aforementioned Weyl–Moyal map,

T(x, t) =
∫

˜IR2

d2k
(2π)2

TrH
(
eik·x̂T (t)

)
e−ik·x,

then permits us to re-express the (2 + 1)-dimensional
NCFT (4.2) as a one-dimensional Hermitian matrix model:

ISNC[θ;V ] = θ

∫
dtTrH

[(
1
2
(∂tT )2 − V (T )

)
+

1
θ

(
+

1
2
[x̂,T ]2

)
+ · · ·

]
. (4.3)

At leading order in (1/θ), both (4.2) and (4.3) are invari-
ant under the U(∞) symmetry group of area-preserving
diffeomorphisms:

T(x, t) → U(x, t) � T(x, t) � U−1(x, t)

←→ T → U(t)T (t)U−1(t).

The scalar field, realized as an operator field T (t) on the
auxiliary Hilbert space H, is expandable as a linear com-
bination of one-dimensional projection operators:

T (t) =
dimH∑
�=1

λa�
(t)P �,

where the one-dimensional projection operators P � are
defined as in (A.3) and the coefficients λa are generically
time-dependent.

4.2 Classical vacua and solitons

Utilizing the one-dimensional projection operators P �, it
is straightforward to construct static classical solutions,
as shown first in [3]. Denote the critical points of the po-
tential, defined by V ′(λ) = 0, as λ0, λ1, λ2, · · ·, arranged
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in ascending order of the critical point energy: V (λ0) ≤
V (λ1) ≤ V (λ2) ≤ · · · The most general solution to the
tachyon equation of motion

−∂2t T (t)− V ′(T ) = 0

is expressible as

T (0) =
dimH∑
�=1

λa�
P �,

where the coefficients λa�
(t) obeys the single-particle

equation of motion

−λ̈a�
(t)− V ′(λa�

(t)) = 0.

Evidently, the ath vacuum is given by

T a =
dimH∑
�=1

λaP � = λaIIH (a = 0, 1, 2, · · ·),

where the λa�
take values out of the set (λ0, λ1, · · ·) per-

mitting duplications. Likewise, a classical static soliton is
given by

T soliton(t) =
dimH∑
�=1

λ�P �,

where the coefficients λ� consist of at least two distinct
values among the critical points. For example, a static
soliton of type (Na, Nb) is given by

T (Na,Nb) = λaP [Na] + λbP [Nb]. (4.4)

Not surprisingly, the soliton takes the same form as the
[Na, Nb] instanton considered in Sect. 2, as, even in a non-
commutative context, instantons in (2 + 0)-dimensional
NCFT are identifiable with static configuration of solitons
in (2 + 1)-dimensional NCFT.

To exemplify this, consider again the symmetric double-
well potential:

V (T ) = V0 +
λ4
4

(
T 2 − T20

)2
.

The classical vacua are given by the linear operators

T vacuum = ±T0II,

while the static (N1, N2) soliton is given by

TN1,N2 = T0
(
P [N1] − P [N2]

)
.

The U(∞) invariant collective excitations are encoded into
the eigenvalue density field ρ(λ, t) [30]:

ρ(λ, t) :=
1

dimH
dimH∑
�=1

δ(λ− λ�(t)). (4.5)

For example, the static (N1, N2) soliton is then given by
a saddle-point configuration of the density field ρs(λ):

ρ[N1,N2](λ) = n1δ(λ− T0) + n2δ(λ+ T0),

where

n1,2 =
N1,2
dimH . (4.6)

4.3 Quantum theory

Definition

For the definition of the theory at the quantum level,
we will adopt the same prescription as for the (2 + 0)-
dimensional case. Thus, in the Moyal formulation via (2+
1)-dimensional NCFT, the regularized partition function
is defined by

ZNC[θ, V�;L1L2] =
∫

[dT(t)]L1,L2 exp(−SNC[θ;V�(T)]).

In the Weyl formulation via the (0 + 1)-dimensional Her-
mitian matrix model, the regularized partition function is
defined by

ZN [θ, V ;N ] =
∫

[dT (t)]N exp (− ISNC[θ;V (T )] ,

where the integration measure is defined as in (2 + 0)-
dimensional NCFT:

[dT]N := (4.7)∏
−∞<t<+∞

 N∏
�=1

dT��(t)
∏

1≤�<m≤N

2dReT�m(t)ImT�m(t)

 .

The Weyl–Moyal correspondence then implies that

lim
L1L2→∞

ZNC[θ, V�;L1L2] ≡ lim
N→∞

ZN [θ, V ;N ].

We will thus investigate the quantum effects in terms
of the right-hand side, viz. the (0 + 1)-dimensional Her-
mitian matrix model. We are interested in computing the
ground-state energy and low-energy excitations of the the-
ory. From (2.6) and the definition of the integration mea-
sure (4.7), one readily obtains the Hamiltonian:

H = − 1
2θ

∆T + θTrV (T ) +∆Hgrad,

where

∆T := −TrΠ2
T =

N∑
�=1

∂2

∂T 2��

+
1
2

∑
1≤�<m≤N

(
∂2

∂ReT 2�m
+

∂2

∂ImT 2�m

)

∆Hgrad =
(
−1

2
[x̂,T ]

)2
. (4.8)

For now, anticipating a similar power-counting suppres-
sion as in the two-dimensional NCFTs, we will drop the
gradient term ∆Hgrad, and justify it later in Sect. 4.5.
Parametrize the matrix field T (t) as

T (t) = U(t) · T d(t) ·U−1(t),

where

T d(t) = diag. (λ1(t), · · · , λN (t)) .
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The “angular” matrix U(t) parametrizes the coset space
SU(N)/W, whereW refers to the Weyl group, permuting
the eigenvalues. Evidently, as the Hamiltonian is invariant
under the U(∞) transformation, the ground-state wave
function Ψ(T ) ought to be a symmetric function of the
eigenvalues λ� of T . The ground-state energy is given by

Eg.s. = lim
N→∞

MinΨ
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

over the variational wave functions Ψ . Here, the matrix
elements are

〈Ψ |H|Ψ〉 =
∫

[dT ]Ψ †(λ)HΨ(λ)

and

〈Ψ |Ψ〉 =
∫

[dT ]Ψ †(λ)Ψ(λ).

Note that the ground-state wave function Ψ is invariant
under the transformation T (t)→ U(t)T (t)U−1(t). Elim-
inating the “angular” variables U(t), the matrix elements
can be rewritten as

〈Ψ |H|Ψ〉 =
∫ N∏

�=1

dλ�∆2(λ)

×
(

1
2

N∑
�=1

|∂λ�
Ψ(λ)|2 + V (λ) |Ψ(λ)|2

)
,

〈Ψ |Ψ〉 =
∫ N∏

�=1

dλ�∆2(λ) |Ψ(λ)|2 ;

the Vandermonde determinant ∆(λ) =
∏

�<m(λ� − λm)
arises as the Jacobian of the change of variables, (4.9). The
expression suggests the introduction of an antisymmetric
wave function Φ(λ):

Φ(λ) = ∆(λ)Ψ(λ1, · · · , λN )

as the wave function of N := dimH species of the first-
quantized “analog” fermions in one dimension, spanned by
the eigenvalues. The corresponding Schrödinger equation
is given by

i
∂

∂t
Φ(λ1, · · · , λN ; t) = HNCΦ(λ1, · · · , λN ; t).

where the Hamiltonian HNC is given by

HNC =
N∑
�=1

H[λ�]

as a sum of one-particle Hamiltonians H[λ]

H[λ] :=
[
− 1

2θ
∂2

∂λ2
+ θV (λ)

]
. (4.9)

The Hamiltonian describes a non-interacting Fermi gas
in an external potential V (λ). The above Hamiltonian is

precisely the one derivable from the action (4.3), but in
terms of the diagonal field variables:

S = θ

∫
dt

N∑
�=1

[
1
2
(∂tλ�)2 − V (λ�)

]
.

4.4 Classical, planar, and disordered phases of NCFT3

To explore possible disordered phases of the theory, we
investigate what sort of vacuum structure emerges once
quantum effects due to the many-body “analog” fermions
are taken into account.

For concreteness, consider a potential V (λ) with a
unique minimum at λ = 0 whose classical vacuum is given
by λ� = 0 for all 3 = 1, 2, · · · , N . A harmonic fluctuation
around the vacuum is described by the action

Sharm = θ

∫
dt

N∑
�=1

[
1
2
(∂tλ�)2 −

(
V0 +

1
2
Ω2λ2� + · · ·

)]
,

where Ω2 := V ′′(λ = 0), and the Hamiltonian is

Hharm =
N∑
�=1

[
1
2θ

Π2
� + θ

(
V0 +

1
2
Ω2λ2�

)]
.

At classical level, the ground-state energy of the vacuum
λ = 0 is given by NθV0 and hence, assuming that V0
is fixed, is of order O(Nθ). Quantum mechanically, the
ground-state energy is increased by zero-point fluctua-
tions, and is readily estimated by applying the Schwarz
inequality:

〈H〉 � NθV0 +
N∑
�=1

〈
Π�√
2θ
·
√

θ

2
Ωλ�

〉

∼ NθV0 +
1
2
NΩ. (4.10)

The last formula indicates that the quantum effect is of or-
der O(N). One might be content that the result is consis-
tent with what one anticipates from the following heuristic
argument: for a harmonic fluctuation, the relevant degrees
of freedom are the eigenvalues, λ�(t). As there are N eigen-
values, the zero-point fluctuation is estimated simply to
be N · (1/2)Ω and is of order O(N). If this reasoning is
correct, then it implies that, for large non-commutativity
θ � 1, the quantum effects would be completely negligi-
ble, in sharp contrast to the (2 + 0)-dimensional case.

It turns out that the above reasoning is incorrect, as
Fermi statistics of the “analog” fermions are not prop-
erly taken into account. We will argue momentarily that
the quantum effect on the ground-state energy is of order
O(N2) and, based on this, the quantum NCFT comprises
three distinct phases:

classical GMS phase : θ ∼ N1+ν (ν > 0),
planar ′tHooft phase : θ ∼ N, g2eff = fixed,

disordered phase : θ ∼ N1−ν (ν > 0). (4.11)
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To see these phases, it is sufficient to examine the ground-
state energy at quantum vacua. For simplicity, we will
approximate the potential by a quadratic function with
Ω = 1. Denoting the one-particle fermion energy levels
by e1 ≤ e2 ≤ e3 ≤ · · · and the Fermi energy by eF, the
particle number N and the total energy E is given by [15]

N :=
∑
�=1

θ (eF − e�)

=
∫

dλdp
2π

Θ

(
eF − p2

2θ
− 1

2
θλ2 − θV0

)
,

E :=
∑
�=1

e�Θ (eF − e�)

=
∫

dλdp
2π

Θ

(
eF − p2

2θ
− 1

2
θλ2 − θV0

)
×

[
p2

2θ
+

1
2
θλ2 + θV0

]
.

Here, V0 refers to the minimum of the potential, the clas-
sical energy.

The above expressions implies that, in the total energy
E , the classical contribution is of order O(Nθ), while the
quantum contribution is of order O(N2). To show this,
solve first the Θ function constraint of the “Fermi surface”
as

|p(λ)| ≤
√

2θ

√
ẽF − 1

2
θλ2 where ẽF := (eF − θV0) .

It then allows one to compute N and E explicitly. Begin
with the particle number, N . Integrating over p first, ele-
mentary algebra yields

N = 2
∫

dλ
2π

√
2θ

√
ẽF − 1

2
θλ2

= ẽF.

This indicates that the Fermi energy ẽF = (eF − θV0) is of
order O(N). We will thus set ẽF := Nε̃ and, in the large-N
limit, hold ε̃ fixed to O(1) constant. Similarly, integrating
over p first, the total energy E is obtained as a sum of
classical and quantum contributions:

E = Eclassical + Equantum,
where

Eclassical = ẽFθV0 = O(Nθ) (4.12)

and

Equantum =
(

1
4

+
1
4

)
ẽF
2 =

1
2
ẽF
2 = O(N2). (4.13)

The first and the second terms in Equantum are the con-
tributions of the kinetic and potential energies, respec-
tively. Evidently, the result exhibits that Equantum is of
order O(N2), not O(N) as anticipated from the afore-
mentioned naive reasoning. With Fermi statistics taken

into account, this correct result can be understood intu-
itively as follows. In the θ → ∞ limit, the effect of the
functional integral measure is to turn the eigenvalues into
positions of the “analog” fermions. As such, because of
the Fermi pressure, the ground-state energy will increase,
with size estimated to be

∆E ∼
N∑
�=0

1
2
3Ω ∼ O(N2),

thus obtaining the correct scaling in the large-N limit.
From (4.12) and (4.13), we come to the conclusion

that, in the large-N and large-θ limit, depending on the
relative magnitude of N and θ, the ground-state energy
will scale differently. If N � θ, the ground-state energy is
dominated by the classical contribution, which we have re-
ferred as the “classical phase”. If N ∼ θ, the classical and
the quantum contributions are equally important. This is
the “planar phase” – the phase familiar in the context of
the planar expansion of matrix models. If N � θ, the en-
ergy is dominated by the quantum contribution, which we
referred to as the “disordered phase”.

4.5 Effects of the gradients

So far, our analysis was based on truncation of the
∆Hgradient term in (4.8). In this section, we will prove that
this gradient term effect is negligible in the weak ’t Hooft
coupling regime, quite analogous to the situation for two-
dimensional NCFTs analyzed in Sect. 3. For the present
case, now dealing with temporal evolution, we will pro-
ceed slightly differently and utilize the Gibbs inequality
(see, for example, [28]). Let us begin with the Euclidean
partition function, expressed in terms of the canonically
normalized field M(t) = θ1/2T :

ZN =
∫

[dM(t)dΠ(t)]N (4.14)

× exp
(
−

∫ [
−iTrΠ(t)Ṁ(t) + H(M(t))

]
dt
)
.

Here, the Hamiltonian H is given by (4.8), which we de-
compose as

H = H0 +∆Hgrad,

where

H0 =
1
2
TrΠ2(t) +

m2

2
TrM2,

∆Hgrad =
1
θ
Tr

(
−1

2
[x̂a,M ]2

)
. (4.15)

The decomposition allows us to estimate the gradient ef-
fect non-perturbatively. To this end, we will apply the
Gibbs inequality to the partition function (4.14), and ob-
tain the following upper bound to the exact effective ac-
tion Γexact:

Γexact ≤ Γ0 +∆Γ.
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Here,

Γ0 = − ln
∫

[dM(t)dΠ(t)]N

× exp
(
−

∫
[−iTrΠ(t)Ṁ(t)− H0(M)]dt

)
∆Γ :=

〈∫
dt∆Hgrad(t)

〉
0
, (4.16)

where

〈· · ·〉0 = e−Γ0

∫
[dM(t)dΠ(t)]N · · ·

× exp([−iTrΠ(t)Ṁ(t)− H0(M)]dt).

The correction ∆Γ is computable utilizing precisely the
same method as that in Sect. 3.4, except that now the
field variables are time dependent6 This time dependence
renders the two-point propagator 〈Mkl(t)Mmn(t′)〉 be-
havior for short time differences |t− t′|: ∼ exp(−m|t− t′|).
Fortuitously, computation of ∆Γ involves only the coin-
cident two-point propagator (see (4.15) and (4.16)), and
involves precisely the same group theoretic combinatorics
as in (3.10). Thus, following the same large-N counting as
in Sect. 3.4, we obtain

∆Γ =
〈

1
θ
Tr

(
−1

2
[x̂a,M ]2

)〉
∼ N2

θ

(∫
dλρ(λ) λ2 −

[∫
dλρ(λ) λ

]2)

∼ 1
θ
O(N2). (4.18)

We conclude that, non-perturbatively, the size of the gra-
dient effect is bounded from above, and is suppressed by
1/θ compared to the estimates based on Hermitian matrix
quantum mechancs with the Hamiltonian H0.

6 In fact, if all the couplings in the Hamiltonian are time-
independent, one can follow a method similar to the one of
Sect. 3.4 by utilizing the defining relations

exp(−Γ ) = TrHFock exp (−βH)
= TrHFock exp (−β∆Hgrad) exp (−βH0)

and

exp(−Γ0) = TrHFock exp (−βH0) .

Thus, applying the Gibbs inequality, one obtains

Γexact ≤ Γ0 + β 〈∆Hgrad〉0 ,

where

〈(· · ·)〉0 :=
TrHFock(· · ·) exp (−βH)
TrHFock exp (−βH)

. (4.17)

Evaluation of (4.17) is achievable precisely as in the two-
dimensional Euclidean NCFTs, as the latter can be viewed
as the classical statistical mechanics of the (2+1)-dimensional
NCFTs. Thus, utilizing the results of Sect. 3.4, we obtain the
same results and conclusions as in (4.18)

4.6 Quantum vacua and solitons

Having identified the three possible phases at the quantum
level, we now examine the vacua and solitons, and their
quantum aspects. Let us introduce the second-quantized
fermion field, Ψ(x, t). The Hamiltonian is then expressible
as

H =
∫

dλΨ †(λ, t)
(
−1
θ

∂2

∂λ2
+ θV (λ)

)
Ψ(λ, t), (4.19)

and we can interpret it as the Hamiltonian for a second-
quantized fermion interacting with the external potential,
V (λ). In the saddle-point approximation, the equation of
motion of the density field ρ(λ, t) is given by7

∂t

(
1
ρ
∂t∂

−1
λ ρ

)
= ∂λ

(
1
2
ρ2 + V (λ)

)
. (4.20)

Utilizing the WKB approximation for the energy levels,
one finds the static solution of the density field:

ρs(λ) =


g−2
eff

√
2 (g2effE − V (λ))

for V (λ) ≤ g2effE,

0 otherwise,
(4.21)

where g2eff refers to the ’t Hooft coupling parameter, g2eff =
(N/θ) and E refers to the first integral of (4.20), piecewise
constant on each classically allowed region and fixed by
the normalization condition

+∞∫
−∞

dλρs(λ) = 1. (4.22)

Thus, in the case of a double-well potential, taking the
first integrals of motion, E1, E2, on the left and the right
wells, respectively, to be below the energy at the top of the
potential, the static density field ρs(λ) is supported at the
two disconnected parts (see Fig. 5) DL,DR, respectively.
The normalization condition (4.22) then implies that∫

DL

dλρs(λ) = n1 and
∫

DR

dλ ρs(λ) = n2,

where n1 + n2 = 1. The two extreme limits, n1 = 0 and
n2 = 0, correspond to the two “quantum” vacua, dis-
tributed around the respective locations of the classical
vacua, while the non-zero pairs of [n1, n2] correspond to
the “quantum” solitons. Note that the first integrals of
motion, E1, E2, take different values generically, as quan-
tum mechanical tunnelling between the two potential wells
is suppressed in the N, θ →∞ limit.

Classical limit: �→ 0

As a consistency check of the aforementioned three phases
of the quantum NCFT, we will now examine the classical

7 This equation of motion is approximate [32], though it is
sufficient for our present purpose
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Fig. 7. Density profile of the “analog” fermions in the one-
particle phase space and in the eigenvalue space. The width
of the density profile is given by ∆λ ∼ (ẽF/θ)1/2 and ∆p ∼
(ẽFθ)1/2 so that ∆λ∆p ∼ ẽF, consistent with Fermi statistics.
In the classical limit, the profile reduces to delta-function dis-
tributions

limit by taking � → 0, while holding N large but fixed.
First, from (4.11), we observe that the Planck constant �

ought to be associated with g2eff , as taking g2eff ≡ (N/θ)→
0 along with N →∞ renders the planar phase to approach
to the classical phase. In the notation of (4.11), this implies
that the ’t Hooft coupling scales as g2eff ∼ N−ν → 0.
Hence, in this subsection, we will take the Planck constant
� equal to the ’t Hooft coupling g2eff .

Consider the double-well potential studied in the pre-
vious subsections. In the classical limit, we expect that
the profiles of the eigenvalue density field are reduced
to those of the classical phase, viz. the vacua and soli-
tons found in [3]. This can be understood as follows. For
E1, E2 below the potential barrier, each disconneced sup-
port of the eigenvalue density field ρs(λ) in (4.21) shrinks
as � ∼ g2eff → 0, to a certain distribution of zero width,
centered around λ = λ1 and λ = λ2, respectively. Exam-
ining the limit carefully, we find that

ρs(λ)
�
−→ n1δ(λ− λ1) + n2δ(λ− λ2),

accurately reproducing the classical profile of the eigen-
value density field, (4.6). Stated differently, starting from
the classical vacua and solitons (4.6) of Gopakumar, Min-
walla and Strominger [3], turning on the quantum effects
renders them to the filled Fermi sea of the Hermitian ma-
trix quantum mechanics, either on a single well or multiple
wells; see Fig. 7.

To convince the readers that the classical limit is cor-
rectly reproducible, consider the simplest situation again –
the single-well potential V (λ) = (1/2)Ω2λ2. Then, in the
large-N limit, E = N�Ω (ignoring the zero-point fluctua-
tion energy), and (4.21) implies that

+∞∫
−∞

dλρs(λ) =
1
N�

+λ0∫
−λ0

dλ

√
2
(
N�Ω − 1

2
Ω2λ2

)
= 1

over the band [−λ0,+λ0]. Here, we have used the following
value of the turning point, defining the band edge of the
distribution:

λ0 =
√

2N�/Ω.

One immediately notes that Planck’s constant � is in the
right place in (4.21), identifiable as g2eff ∼ �. As �→ 0, for
a fixed but large N , the band edge λ0 scales to zero, and
hence the band width shrinks to zero size. At the same
time, the mid-band density scales as (Ω/N�)1/2 → ∞.
Evidently, in the classical limit, the product of the mid-
band density times the band width remains constant and
is always of order O(1).

As is well exploited in the context of the matrix model
description of the c = 1 non-critical string [18], the profile
of the density field ρ(λ) is expressible alternatively using
Wigner’s phase-space distribution function of the N “ana-
log” fermions:

F (p, λ; t) =
∫

dxΨ†
(
λ− �

2
x, t

)
e(i/�)pxΨ

(
λ+

�

2
x, t

)
=

∫
dxΨ† (λ, t) � e(i/�)px � Ψ (λ, t) .

Here, the coordinates (λ, p) obey Moyal’s commutation
relation, [p, λ]� = i� 8. In terms of Wigner’s distribution
function, the eigenvalue density field is expressed com-
pactly by

ρ(λ, t) =
�

N

∫
dpF(p, λ; t),

measuring the distribution of the eigenvalues. The fac-
tor of � reproduces correctly the normalization condition∫

dpdλ�F(p, λ; t) = 1. As shown in [32], the Wigner func-
tion corresponding to a saddle-point configuration is sim-
ply given in the first-quantized description by the phase-
space density of N fermions. The fermions occupy the low-
est N energy eigenstates of the one-particle Hamiltonian
H(λ) in (4.9).

4.7 Second-quantized description

Actually, using the second-quantized fermion field oper-
ators introduced in (4.19), the eigenvalue density field is
now expressible by the fermion number density operator:

ρ̂(λ, t) =
1
N
Ψ †(λ, t)Ψ (λ, t) , (4.23)

yielding the correct normalization,
∫

dλΨ †(λ, t)Ψ(λ, t) =
N . Taking the expectation value of (4.23) on a many-
particle state |λ1, . . . , λN 〉, the antisymmetrized product
of N position eigenfunctions, we obtain

〈λ1, . . . , λN |ρ̂(λ)|λ1, . . . , λN 〉 = 1
N

N∑
�=1

δ(λ− λ�(t)),

(4.24)

8 It is worthy noting that the matrix model for the c = 1 non-
critical string provides an early example of a non-commutative
field theory
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matching perfectly with (4.5). It also satisfies the normal-
ization condition

+∞∫
−∞

dλ 〈ρ̂(λ, t)〉 = 1.

Equation (4.24) implies that the operator ρ̂(λ) is express-
ible by

ρ̂(λ) =
1
N

N∑
�=1

δ(λ̂− λ�(t)), (4.25)

where λ̂ refers to the position operator in the first-quan-
tized description. This then defines the density field oper-
ator at the quantum level.

Equipped with the eigenvalue density field operator
(4.25) via the second-quantized fermion field Ψ , one can
exploit the quantum effect on the NCFT vacua and soli-
tons. Restricting low-energy excitations to the U(∞) in-
variant sector, we have found that the classical dynamics
of the tachyon field is described by the density field ρ(λ).
Likewise, in the same U(∞) invariant sector, the quantum
dynamics of the tachyon field is described by the density
field operator ρ̂(λ) defined in (4.25). The extent of quan-
tum effects can be judged by taking the expectation value
of (4.25) and measuring the deviation from its classical
value (4.5). For instance, by approximating the eigenvalue
density field operator to be the same as the classical distri-
bution, we have obtained in the previous subsection that

〈ρ̂(λ)〉 = 1
�

√
2(E − V (λ)).

Equivalently, the U(∞) invariant information of the
tachyon field is governed by the change of variable:

1
N

TrHT n =

+∞∫
−∞

dλλnρ(λ).

Thus, from a knowledge of the classical ρ(λ), one can re-
construct the classical tachyon field T in the Weyl for-
mulation. One can subsequently rebuild the tachyon field
T(x) on IR2 via the Weyl–Moyal correspondence map. The
reconstruction is equally applicable at the quantum level.
For instance,

1
N

TrH
〈
T̂
n
〉

=

+∞∫
−∞

dλλn 〈ρ̂(λ)〉 .

Denote the image of the Weyl–Moyal map of
〈
T̂
〉

T̂(x).
Then, the above equation becomes

1
V (IR2θ)

∫
IR2

θ

d2x
[
T̂(x) � T̂(x) � · · · � T̂(x)

]
n−tuple

=

+∞∫
−∞

dλλn 〈ρ̂(λ)〉 . (4.26)

This moment relation enables one to reconstruct the
“quantum” profile of the vacua and solitons over IR2θ. We
will utilize this map by illustrating two representative
physical consequences driven by the “quantum effects”.

Quantum destruction of long-range order

We have already demonstrated that the quantum effect
drives the classical density profile of delta-function type
into a Fermi distribution, as depicted in Fig. 7. A conse-
quence of broadening into the Fermi distribution is that
the translational invariance over IR2θ, viz. xa → xa+ (con-
stant), which is respected by all classical vacua, is dynam-
ically broken.

Recall that the classical vacua correspond to density
distributions of delta-function type, all eigenvalues taking
the same value, say, T0. Thus, (4.26) yields

1
V (IR2θ)

∫
IR2

θ

d2x(T̂(x))n� = Tn
0 for n = 1, 2, 3, · · ·

and hence we find the unique solution as T̂(x) = T0 –
a homogeneous configuration, respecting the translational
invariance over IR2θ.

Once quantum effects are taken into account, as shown
above, the classical delta-function type density distribu-
tion is broadened into a Fermi distribution putting each
eigenvalue at a different value – a consequence of the re-
pulsion between adjacent eigenvalues. In this case, it is
fairly straightforward to convince oneself that there is no
homogeneous solution solving the moment map (4.26) for
all n. As such, a generic solution of (4.26) ought to be a
non-trivial function over IR2θ. To illustrate this, let us take

〈ρ̂(λ)〉 =
{

1/R for −R/2 ≤ λ ≤ +R/2,
0 otherwise.

Then a solution of (4.26) is easily found:

T̂(x) =

{
x1 for −R/2 ≤ x1 ≤ +R/2,
0 otherwise,

(4.27)

thus breaking translational invariance along the x1-direc-
tion over IR2θ, though invariant under translation along the
x2-direction. There are also infinitely many other solutions
of (4.26), including the “stripe-phase” states, but these are
all related to the solution (4.27) via U(∞) rotations, viz.
solutions of the type U(x)�T(x1)�U−1(x) for an arbitrary
U(x).

We conclude that the translational long-range order of
the classical vacua in NCFT is destroyed generically by
quantum fluctuations.

Quantum corrected soliton mass

Consider the classical soliton of type (Na, Nb), (4.4). We
are interested in estimating the mass of the “quantum”
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soliton, or, equivalently, the quantum correction to the
soliton mass. Take, for definiteness, the potential V (T ) of
the type given in Fig. 3. Classically, the soliton mass is
simply given by the increase of the potential energy by
moving, out of in total N = NL+NL eigenvalues situated
at the global vacuum on the left well, a fraction of NR
eigenvalues to the local minima on the right well. Denoting
the energy difference between the left and the right wells,
VL, VR, as ∆V = (VR − VL), the classical soliton mass is
given by

M(NL,NR)[classical] ∼ θNR∆V.

Quantum mechanically, the eigenvalue distribution for
both the global vacuum and the (NL, NR) soliton will be
broadened into Fermi distributions. Thus, the quantum
corrected soliton mass is estimated by computing the dif-
ference of the energy functional averaged over the Fermi
distributions according to (4.26). Utilizing the results of
(4.12) and (4.13), we estimate the quantum corrected soli-
ton mass to be

M(NL,NR)[quantum] =
〈E(NL,NR)

〉− 〈E(NL+NR,0)
〉

∼ (
θNLVL +N2

L
)
+

(
θNRVR +N2

R
)− (

θNVL +N2)
= M [classical]− 2NLNR.

We thus deduce that the quantum correction, as given by
the second term in the last expression, is negative and
is of order O(N2). Evidently, the correction is negligible
in the GMS-phase, comparable in the planar phase, but
outweighs the classical mass in the disordered phase.

5 Discussions

Before closing, we would like to bring up the investiga-
tion of related phenomena in other contexts. The first
concerns quantum effects either in IKKT Type IIB or in
BFSS Type IIA matrix theories. For the Type IIB IKKT
matrix model, the issue of the measure-induced interac-
tion between eigenvalues and its consequences has been
considered previously, albeit in a different context and
with a different motivation. See, for instance, the results of
[33] and references therein. The classical moduli space is
given by ten commuting matrices whose eigenvalues span
IR10, ten-dimensional Euclidean spacetime. A calculation
of the matrix partition function indicates that the moduli
space is partly lifted and, normally speaking, a smaller-
dimensional submanifold remains non-compact and flat.
The result is attributed to a logarithmic interaction be-
tween the eigenvalues as the remaining “angular” degrees
of freedom are integrated out. This is similar to the Van-
dermonde effect of the one-matrix model.

Classical solutions of the IKKT and BFSS matrix mod-
els include all of the D-branes in Type IIA and IIB strings.
The low-energy theory is equivalent to NCFTs involv-
ing both scalar and gauge fields. An immediate question
is whether there exist various kinds of large-N limits in
these field theories, some of which might destabilize the
D-branes by quantum fluctuations. We believe that this is

a very important issue, so let us look a little closer. One
place to look for this sort of effect would be one-loop com-
putations in the IKKT and BFSS matrix models which
might show the necessity of a sort of ’t Hooft-like scaling,
viz. θ ∼ N , without which the D-brane solutions might be
completely destabilized, which is the counterpart of the
disordered phase studied in this paper. Of course, for Dp-
branes or a system of Dp–Dq-branes (with p = qmod4)
bosonic and fermionic determinants cancel because of su-
persymmetry and there are no large-N divergences at one
loop. On the other hand, supersymmetry is broken in sit-
uations involving

(i) relative motion between the BPS-branes,
(ii) Dp–Dq-branes with p− q not a multiple of 4, and
(iii) brane–antibrane systems.
In (iii), the D2–D̄2 system [34,35] was studied extensively,
and it would be an interesting starting place to address
the large-N issues raised here.

Second, as elaborated in Sect. 2.7, the measure effect
we have discussed in this paper is intimately related to
the phenomenon of IR divergence [21] through non-planar
diagrams. Recently, it has been shown [36] that the com-
pletion of all the non-planar diagrams participating in the
UV–IR mixing in NCFTs studied in this work is express-
ible entirely in terms of the scalar counterpart of the open
Wilson lines [37]. The effective action is then interpreted
as (the Legendre transform of) an effective field theory
of non-commutative dipoles – the non-commutative man-
ifestation of dynamically generated “closed strings” [38].
There, the result was based exclusively on the Moyal for-
mulation. An interesting problem is to recast this result
in the Weyl formulation, and to understand the three dif-
ferent scaling regimes in terms of the open Wilson lines
and non-commutative dipoles.

Finally, it would be interesting to see if the transition
to the disordered phase discussed in this paper is related
to the large-N phase transition [26].

We will report progress regarding the above problems
elsewhere.
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Appendix
A Weyl–Moyal correspondence

In this section we briefly review the operator formulation
of NCFT in the context of Sect. 2.1.

One begins by introducing an “auxiliary” one-particle
Hilbert space H, of dimension dimH = N 9, carrying a

9 Since representations of (A.1) are necessarily infinite-
dimensional, N = ∞ at the moment. We will shortly discuss
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representation of the Heisenberg algebra:[
x̂a, x̂b

]
= iεabII.

The Weyl–Moyal map refers to the isomorphism between
functions on IR2θ and operators on H:

x←→ x̂,

T(x)←→ T (x̂),
V�(T )←→ V (T ),∫

d2x · · · ←→ TrHθ
· · · (A.1)

In particular, in a plane-wave basis, the Weyl–Moyal map
renders the following one-to-one correspondence between
the fields:

T(x) =
∫

˜IR2

d2k
(2π)2

e−ik·xTrH
(
eik·x̂T

)
, (A.2)

which follows from the Weyl ordering prescription of the
operators x̂.

The map, (A.1), then equates the NCFT action (2.4)
with (2.6). Operators on H are realizable in terms of ma-
trices once we introduce a complete set of orthonormal
basis elements of H as |3〉, 3 = 1, 2, · · · ,dimH ≡ N , and
one-dimensional projection operators therein:

P � = |3〉〈3| 3 = 1, 2, · · · ,dimH ≡ N. (A.3)

The P �’s satisfy the projective and the completeness re-
lations:

P �Pm = δ�mPm and
N∑
�=1

P � = II.

At leading order in (1/θ), both (2.4) and (2.6) are in-
variant under

T(x)→ U(x) � T(x) � U−1(x)←→ T → UTU−1,
(A.4)

representing an area-preserving diffeomorphism; equiva-
lently, U(∞) symmetry. The symmetry is broken explic-
itly by the term L−1.

B Large-N saddle point of one-matrix model

As mentioned in Sect. 2.4, taking θ = N/g2eff and small
enough geff , we have seen that the large-N saddle point for
the density ρs (ρ defined in (2.7)) is simply an extremum
of the effective action (2.23) (with the constraint (2.22)
taken care of by a Lagrange multiplier E):

Stotal[ρ] = Seff [ρ] + E

(
1−

∫
D

dλρ(λ)
)
. (B.1)

(Sect. 2.3) how on a non-commutative torus with rational θ, N
becomes finite

The saddle-point equation for ρ then reads

∂ρStotal[ρ] = N2
[
g−2
eff V (λ)− 2

∫
D

dµρ(µ) ln |λ− µ|
]

− NθE = 0 for λ ⊂ D, (B.2)

viz. analytically continuing to the complex λ plane, the
real part of

Veff(λ) = V (λ)− 2g2eff

∫
D

dµρ(µ) ln(λ− µ)

remains constant, E, over the support D. Taking the deri-
vative of (B.2) with respect to λ, one obtains the following
dispersion relation:

1
2g2eff

V ′(λ) =
∫

D
− dµ

ρ(µ)
λ− µ

for λ ⊂ D.

The right-hand side is related to the resolvent R(λ) of the
eigenvalue distribution:

R(λ) := lim
N→∞

〈
1
N

Tr
1

λ− T

〉
=

∫
D

dµ
ρ(µ)

(λ− µ)
,

ReR(λ) =
∫

D
− dµ

ρ(µ)
(λ− µ)

, (B.3)

supplemented with the boundary condition

R(λ) =
1
λ

+O
(

1
λ2

)
for λ→∞

as a consequence of the normalization condition∫
dλρ(λ) = 1.

Consider now the potential (2.8). Let us look for a sad-
dle point corresponding to the (N1, N2) instantons. Evi-
dently, extending the above results, the quantum coun-
terpart of (N1, N2) instantons ought to correspond to so-
called two-cut distributions in the matrix model. The two-
cut distribution is characterized by two disjoint intervals
D1,D2 and fractions of the eigenvalue density:

n1 =
∫

D1

dλρ(λ) and n2 =
∫

D2

dλρ(λ)

with n1 + n2 = 1. In the large-N , large-θ limit, the total
action is now given by

Stotal[ρ;n1, n2] = Seff [ρ] + E1

(
n1 −

∫
D1

dλρ(λ)
)

+ E2

(
n2 −

∫
D2

dλρ(λ)
)
.

The saddle-point equation for ρ(λ) takes the same form
as before, viz.:

N2
(
g−2
eff V (λ)− 2

∫
D1

dµρ(µ) ln |λ− µ|
)

= NθE1

for λ ⊂ D1,
N2

(
g−2
eff V (λ)− 2

∫
D2

dµρ(µ) ln |λ− µ|
)

= NθE2

for λ ⊂ D2.
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The saddle-point equation with respect to n1 yields

∂n1Stotal[ρ;n1, n2] = (E1 − E2) = 0. (B.4)

For the double-well potential of the type (2.8), the distri-
bution on the two wells is symmetric. Using the methods
mentioned above (see [15,24] for more details), one finds
that the saddle point is given in terms of a two-cut eigen-
value distribution (2.27).
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